Indian Statistical Institute, Bangalore

M. Math.

First Year, Second Semester

Functional Analysis

Final ExaminationDate: 24 April 2024Maximum marks: 100Time: 10:00 AM-1:00 PM (3 hours)Instructor: Chaitanya G K

1. (a) Let $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ be Banach spaces. Suppose that $\exists \alpha \ge 0: \|x\|_2 \le \alpha \|x\|_1, \ \forall x \in X.$

Show that the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent.

(b) Consider X = C[0, 1] in the L^p -norm $\|\cdot\|_p$ and sup norm $\|\cdot\|_{\infty}$. Show that if $1 \le p < \infty$, then

$$||f||_p \le ||f||_{\infty}, \quad \forall f \in X,$$

but there is no $\beta > 0$ such that

 $||f||_{\infty} \le \beta ||f||_p, \quad \forall f \in X.$

Does this contradict (a)? Justify your answer.

[5+15]

- 2. Find the dual of l^p for 1 . Justify your answer. [15]
- 3. (a) Let H be a Hilbert space and $T: H \to H$ a linear operator which is symmetric, i.e.,

$$\langle Tx, y \rangle = \langle x, Ty \rangle, \quad \forall x, y \in H.$$

Prove that T is continuous.

OR

(b) Let X, Y and Z be Banach spaces. Suppose that $T: X \to Y$ is linear, that $S: Y \to Z$ is linear, bounded and injective, and that $ST: X \to Z$ is bounded. Show that T is also bounded.

[13]

4. Let X be a Banach space and $\mathcal{K}(X)$ denotes the set of all compact operators on X. If $T \in \mathcal{K}(X)$, show that $T^2 \in \mathcal{K}(X)$. Is the converse true? Justify your answer. [12]

- 2
- 5. (a) Let $C_b(\mathbb{R})$ be the space of all bounded continuous functions f on \mathbb{R} with the norm $||f|| = \sup_{t \in \mathbb{R}} |f(t)|$. Define an operator T on $C_b(\mathbb{R})$ by

 $Tf(t) = f(t+c), \quad \forall t \in \mathbb{R},$

where $c \in \mathbb{R}$ is a constant. Prove that $\sigma(T) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$

OR

(b) Let $K \subseteq \mathbb{C}$ be an arbitrary nonempty compact set. Construct an operator $T \in \mathcal{B}(l^2)$ such that $\sigma(T) = K$.

[15]

6. (a) State and prove Open Mapping Theorem.

OR

(b) Let X be a Banach space. Prove that X is infinite dimensional if and only if any totally bounded set in X is nowhere dense.

[15]

- 7. (a) State and prove Banach-Alaoglu Theorem.
 - (b) Show that every Banach space is isometrically isomorphic to a closed linear subspace of the space C(X) of continuous functions on a compact Hausdorff space X.

[10+10]
